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ABSTRACT

“ Error estimates for Gaussian quadrature are given in terms of the number

of gquadrature points and smoothness properties of the function whose integral
is being approximated. BAn intermediate step involves a weighted-L1 polynomial
approximation problem which is treated in a more general context than that

specifically required to estimate the Gaussian qua~”. ature error. - —
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SIGNIFICANCE AND EXPLANATION

This paper gives error estimates for Gaussian quadrature, one of the most !

widely used methods for approximating integrals. It also studies a related
approximation problem that has more general potential applications to the
study of numerical approximations. A particular anticipated use of the
results on Gaussian quadrature is for error estimates of the discrete
ordinates method for the transport equation, by the second author in
collaboration with Professor J. Pitkdranta of the University of Helsinki.
The transport equation appears as a model equation in nuclear engineering,

astrophysics and climatology, to name only a few instances.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ERROR ESTIMATES FOR GAUSSIAN QUADRATURE
AND WEIGHTED-L' POLYNOMIAL APPROXIMATION

Ronald A. DeVore and L. Ridgway Scott

1. Introduction

m™-e purpose of this note is to establish error estimates for Gaussian
quadrature that reflect the fact that the accuracy is not degraded by certain
singularities of the function to be integrated at the boundaries of the inter-
val of integration. Wwhile it is well known that polynomial approximation can
achieve greater accuracy at the boundary than in the interior (cf. Timan (3],
p. 262), error estimates for Gaussian guadrature of the explicit type given
here have apparantly not been presented before. The basic thrust of these
estimates is to show that the error in N-point Gaussian quadrature for approx-

imately integrating f on [-1,1] 1is bounded by

(1.1) e v [T 1 1 - ¥ 2ax
-1
for all integers s € 2N such that above integral makes sense. Here Cg is
a constant independent of N and f.
Our technique of proof is in two parts. Firstly, we analyze a Peano
kernel for the quadrature error. This has the effect of establishing the

bound (1.1) for 8 = 1 and reducing further estimates to a weighted--L1

approximation problem for polynomials., This part of the analysis is presented
in section 2. Secondly, we consider weighted-L1 approximation by poly-

nomials and prove estimates for the error. This is done in section 3.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This

material is based upon work supported by the National Science Foundation under
Grant Nos. MCS~-81-01661 and MCS-81-01631,
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Finally, the estimates of sections 2 and 3 are combined in section 4 to give
error bounds for Guagssian gquadrature of the type (1.1) for all s ?» 1. The
calculations in section 2 are done specifically for Gaussian quadrature,
although they clearly extend to more general quadrature approximations based
on orthogonal polynomials for weighted integrals.

The weiqhted-n' approximation estimates show that, for a rather general
class of weights w > 0 and sufficiently smooth £ , there is a polynomial

P of degree at mogst N so that

(s) s/

1.2y [ Iee0 - polwimax < c v [N 20(x) ax

-1 -1

(x) | (1-x)

for any s such that N+1 » 3 2 1, In the case w = 1 and s =1, (1.2)

has been established by N. X. Ky (1.
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2. Error estimates for Gaussian quadrature

Consider Gaussian quadrature approximation of the form

N
(2.1) JVeoax ~ ) w, £(x.) = 1(£)
-1 =1 J J N
({xj} are the zeros of the lLegendre polynomials and {mj} are che integrals

of the associated lLagrange interpolation polynomials, cf. G. Szego [2]). The

ordering -1 < X, < **° ¢ Xy < 1 will be assumed, and we introduce Xq :

-1 and Xy4q = 1. We wish to establish estimates of the error

(2.2) e (£) = [ f(x)ax ~ 1 (£)
N -1 N
in terms of N and properties of f. For example, the Peano kernel theorem

1]
allows us to write

e () = [ k()£ (1),
N >
at least for smooth f, where K(t) = ey(Hy), jt] € 1, (cf. (3.3) below)

and He is the Heaviside function

(2.3) H (x) :=
t 1 x? t.

It follows that

K(t) =1-t- ) =1 o~-t-1,

b
xj>t j

The Chebyshev-Markov-Stieltjes inequality (cf. G. Szegd (2], p. 50) implies

that

j = 1'000'N.

Therefore, for j = 1,°°°*,N,

X T %y < x(xj-) <0¢< K(xj+) < xj+1 - xj-

let X denote the continuous, plecewise-linear function (wlth respect to Lhe
knots x1,"°,xN) which interpolates 0 at #1 and the value

d, := max{x

3 37 M5 Y= hemnN

- xj} at xj,
-3
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Since KX 1is itself piecewise linear,
IX(x)] € K(x) for all x e [-1,1].

To bound the values 4y, recall (cf. G. Szego (2], p. 122) that

(2.4) xj = ~cos ej where (2N+1)9j/'ll € (23-1,23), 3J = 1,°°°*,N,
Thus
- - 8 _ - cosd l
x5 = %y cos 8, , - cosf, ;
;]
= sin o0 a0
0j_1
(2.5) (
< (0 =0 ] -]
( 3 j_1) max {sin 4=1° sin j}
< (3n/2N) max{sin ej-‘l' sin ej}' ?

Since the function O * gin 0/0 is decreasing on ([0,¥], (2.4) implies that '

Yssin 8, < sin 8 < 4 8in © 2<3<N,

- 3 -1’

dj < 6% gin ej/N = 6% /1-00329:) / N = 6% 1-x§ /N.

Since the function x * /ltx_z is concave, this implies that
(2.6) IX(x)] € K(x) € 61!/1Tx—2 /N for x e {-1,1].
Thus we have proved that

legterl < emi " [1 1£0 (0 1/1-x ax.

-1
Since (2.4) implies that

1/N € sin ®/(2N#1) € 1-x2 ‘

for x @ [x",x“] and N ? 2, (2.6) implies further that . |
(2.7) Ix(x)| < 6% (1-x2)
for x @ (x1,x“]. But for x @ [~1,x,] (%011, |IXK(%)| = ¥ =« |[x]. Thus

(2.7) holds for all x e [~1,1], giving the following estimate:

IeN(f)l < 6n I‘ 1£* (x)| min( 1ox2 /N, 1-x2} dx .

-1
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These estimates hold for all f e L1([-1,1]) whose weak derivative is
integrable with respect to the weight 1 - x2 as can be seen by approxi-
mating f via smooth functions (cf. the definition of the space Y: given

later in section 3), Summarizing the above, we have the following:

Theorem 1. Let ey(f) denote the error in N-point Guassian quadrature

applied to fe L'([-1,1]) (see (2.1-2) for definitions)., If the weak

derivative, f', of f is integrable with respect to the weight 1 - x2,

then

IeN(f)| < 6w f‘ 1€£' ()} min{ 1-x2/N, 1-x2 }ax.
-1

If f' is integrable with respect to V1-x2, then

T o1 2
le.(6)] <22 [V er(x)| V1-x° ax.
N N_1
Estimates involving higher derivatives of f can also be derived by
estimating Peano kernels. For example, one may write, for any 1 € k < 2N,

(k)(x)dx

1
e (f) = I1 K (x)€
(K, = K in the previous notation). XK is a c(k=2) piecewise k-th

degree polynomial (with knots {xi}) satisfying 0 = K (t1) = *** =

(k=1) (k) k (k~1)
1 = (- . +
Kk (1) and Kk (-1) between knots Moreover, Kk (xj )
- Kﬁk-1)(xj-) = hg for j = 1,°**,N. Using these facts together with a
special oscillation property of Ky, it can be shown that

IR, € ¢ min{(1=x)) /4, (1=x) 2L,

However, it becomes increasingly difficult to estimate the higher degree

kernels K., k » 3, Thus the “cllowing approach proves more fruitful.
Observe that ey(f) = ey(f - P) for any P € FEN-1’ where P} denotes

the set of polynomials of degree not exceeding r. Therefore, Theorem 1

lmplies that

(2.8) le (€)1 € inf [V ier-plx wix)ax,

re P:m_2 -1

5=

ey
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where w 1is the weight function

wix) = 6% min{/1-x2/N, 1-x°}.
Thus, estimates of ey(f) are reduced to a weighted-r.' approximation problem
for polynomials. Such problems will be considered in the next section. The
results of section 3 on approximation will be combined with the results of the
present section in section 4 to give higher order estimates of the form
(2.9) legte)] < c, /' 1£'® o tman (/1> ®, (1-x%)%)ax

-1
for arbitrary positive integers s < 2N.
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3. Weighted-L1 approximation

In this section, we shall prove a weighted-L1 polynomial approximation

result of the form
1 - 2
(3.1) inf [ [(u=P](x)w(x)dx € C_ N sf1 lu(S)(x)lw(x)(1-x2)s/ dx,
8,w
peP -1 -1
N
where PN denotes the set of polynomials of degree not exceeding N, s is a
positive integer, cs,w is a constant independent of N and u , and w |is
a positive, integrable weight-function to be discussed in more detail subse-

quently. Rather than state our abstract conditions on w and u initially,

we shall develop them in the ocourse of deriving (3.1). However, suffice it to

say that (3.1) will be proved for a class of weights including the Jacobi

weights '

(3.2) w(x) = (1+x)a(1-x)87 a,B > -1,

As a first step, recall the Heaviside function Ht(x) defined in

(2.3). If u is sufficiently smooth, we may write

_
(s=1)!

for all x e [-1,1], where P, e P _,. Let At e P

s-1 (s8)
u

(3.3) utx) = P, (x) + 1 B 00 (et () at
-1

N-s+1 be an arbitrary

family depending, say, piecewise continuously on ¢, and define

1
(s~1)!

Then P € PN’ and HOlder's inequality and Fubini's theorem imply that

(3.4) P(x) = P,(x) + s=1,(8)

11 A () tx=t) (t)ae.
-1 t

e e

[1 Ju-pl ) wix) ax
-1
(3.5)
1

€ —— (s)
(s=1)1_

AT Iht-ntl(x)lx-tls"w(x)dx}lu
1 -1

(t)lat.

Thus to prove (3.1), it suffices to construct At in such a way that

(3.6) ! |xt-nt|(x)|x-e|"‘w(x)ax < CBN-'(1-t2)s/2w(t).
-1

RO RN RN

For t near %1, this is relatively easy to d under the following

assumption: <
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(A1) There is a constant A, such that

1) ' woax < A (1-the(t) for 0 < e <1
t
and i4) JE wixrax < A, (1+t)w(t) for -1 < t <o,

-1

Example 1. Assumption (A1) holds for the Jacobi weight w(x) = (1+x)a(1-x)

provided a,8 > -1,

Proof. To see this, it suffices to verify, say, i). Then
Mutrax = 1142 (1-x) Bax
t t

< zmax{d,o} f1 ( 1=x) de
t

+B

max{a.o}“_t)1 /(148)

< 2
< 2% /0148)1 (140 2 (100 1P

= A1(1-t)w(t) o« /Y

Lemma. Suppose assumption (A1) holds. For 41 = 0,1, let Al genote the

functions given by

Aix) =1 for all x e [~1,1].

0 1
Then choosing A, = A" for t> 0 and At =) for t <0 gives

IV 1m0 Ix=t 15 e ax < A, (1-62)%u(e)
2, e 1

for all te [~-1,1].

]
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Proof. Suppose t > 0. From (2.3) and (A1), we have

e -1 -1

f Ikt-Htl(x)lx-tls w(x)dx = f1|x-t|s w(x)dx
t

-1
< (1-t)s-1 f‘w(x)dx
t
< A1(1-t)3w(t)
< A1(1-t2)sw(t).

The case t € 0 1is similar. //

Corollary. Let « 2 1 be arbitrary, and suppose (A1) holds. Then for any

N 2 1 and t e {-1,1] such that M—t2 £ /N, the choices for At given

in the Lemma satisfy the estimate (3.6) with Cs = A1Ks.

/. 2
In view of this corollary, it suffices to assume that 1-t~ ? «/N,
where « can be chosen later at our discretion. We shall subsequently

c £ tai £ t, A =12 P h th
onstruct, for certain values o ’ ¢ t,r,N e N-2r+1 such that

- -2r+
(3.7) IHt-At!(x) < Cr( 1-t2/N)2r 1Ix-tl 2r+1 for x € [-1,1],

where r is any positive integer (to be chosen later depending on w and

s). Furthermore, Xt will be monotone, nondecreasing, with Xt(-1) = 0 and
At(+1) = 1. Hence also

(3.8) lnt-ltl(x) €1 for all x € [~1,1]).

Assuming these properties of Xt for some t for the moment, we proceed to

prove (3.6) for such t. Let § = 1-t2/N. Then




1 s-1
{1 'Ht-xtllx 1% "wix) dx

(3.9)
< [ ometlumave, [ 1xetl® <y ax 8270,
Ix-t [<8 |x=t |28 1
Ix1€1 Ix[<1

where we ugsed the bounds (3.8) and (3.7) on the first and second integrals,
respectively. Thus the estimate (3.6) follows easily from the following two

assumptions:

(A2) let s be a positive integer. Then there exist constants Az < ® and

Y > 2 such that, for all 8§ > 0 and t € [-1,1] satisfying 1-t2 > v§,

[ wixst) 1x)% Yax < Azw(t)G'.
Ix[<$

(A3) There exist A3 <®,Y?>2 and 0 < ko < ® guch that, for all § > 0

and t e [-1,1] satisfying 1-t2 > yY§ and all k ? ko, ‘
- -k 4+ !

[ wixet) Ix) Xax < Aw(E)8 k+1

Ix|26

lt+x]€1

[, .2

In applying (A2) and (A3) to (3.9), note that, for § = Y1-t“/N, the condi-
tion 1-t2 > Y6 is equivalent to /1-¢2 > Y/N. This will therefore be
satisfied if X > Y, a requirement we now impose on K. Choosing r such
that 2r-s =; k ? ko thus proves (3.6) for t such that (3.7-8) hold.
Before proving the bounds (3.7) and (3.8), we show that (A2) and (A3) hold for

Jacobi weights.

Example 2: Assumption (A2) holds Ffor the Jacobi weights w(x) = (1+x)a(1—x)8
for all a,B € R.
Proof. Take Y = 3. By a change of variables,
§° [ (w(x+t)/w(t))|xls-1dx ' E
'x"6 l
-8 x o x 8, ,8-1 S
-8 (1+m)(1--1:) Ix|~ ax ;
|x]<6 l
8 8 -1
= [ (1+ (1—”')1()0(1 - H—_Qv)slyls dy. l
lyl<€1
-10- .
O AAIE e 1
. .w<."f7%w A
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2

But for 1-t2 > 38, §/(11t) e (- % ' 3

3max{lal,lBl}

]« Thus the integrand is bounded by
//

Example 3: Assumption (A3) holds for the Jacobi weights w(x) =

(140 %(1-x)® for all  a,8 > -1.

Proof, Take Y =2 and k=2 + max{a,B,0}. Then

gk~ / (w(x+t) /w(e)) |x] Fdx =
|x]>8
| x+t | <1

= &[T wixet) fwe) ) x Kax + gHt(W(t-x)/w(t))x-kdx]
8

k-1 x B -k 1+t B_ <k
s ({ (1+m')(1-1—_€)xdx+£ (= %0+ o ax)

1_(t,8,0,8,k) + I (t,8,a,8,%).

Since 1 _(t,8,9,8,k) = I_i{-t,8,8,a,k), it suffices to show that, for all
el € /T =735,

1_(t,8,a,8,k) € ¢ provided k > 2 + max{a,0}.

By a change of variables, note that
I(1-t)/5(1 +

1
Let M = (1-t)/6. Thus, for a > 0,

1_(t,8,a,B,k) = ;:; )a(1 - 3= 6 )By-kdy.

M - -]
1< Mo o Bk
1

a -1 B Q-
<2 M (1w By Ry

a (M -1 B =
< 2% Mi-n"ly) Ny %y,
1

In the first estimate above, we used the fact that, for |t| < 1,

(14t) 2 (1-t) (14t) > ¥8 = §,

-t1=

- A
v
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For @ ¢ 0, one has

i< Mo by ey
1

< Moy Py ey,
1

A simple calculation shows that, for M 2 1,
f"n-u 182y < cg for all B> -1,

completing the proof. //

We now construct Xt satisfying (3.7-8). We shall d so by choosing
(3.10) A (x) 1= {’1‘ 8, () ey,
where Gt e PN-Zr approximates the Dirac 6-function. In particular, 6t
will be nonnegative and have integral on ([~1,1] equal to one. Thus Xt
satisfies the claimed monotonicity property as well as having the required
values at $1. Hence (3.8) will follow automatically.

To construct § , first note that it suffices to take § (x) := Y for
all xe [-1,1] for N < 4r (recall that we restrict t to satisfy Jq::i

> Y/N in (3.7-8)). For N ? 4r, let n be the greatest integer not

exceeding N/2r. Note that N/n € 3r. Let T, denote the Chebyshev
polynomial of degree n, and let {t1=1 <41 <n} be its zeros:

T, (%) = cos(n(cos™'x))

t, = co8((L -%)W/n) =: cos 8,3 4 =1,°°*,n.

We shall establish (3.7-8) for te {t :1< 1< n}. Define
(3.11) o 00 1= e, [T (x)/(x-t 1%

where c; is chosen so that f‘ 6: (x)ax = 1. To estimate the size of ¢y,
-1 i

obhserve that
]
IT (x)| = lcos n8| >Y for [nb - im| < 3,
«12-

’ ’ . ,mw QW’%" ‘-'-;.
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Thus, writing x = cos 8, we see that for |[nf - iw| < 3

: -1
- 1 -
IT x/tx=t )] 2 Vjcosd - cosb |

-1
>, lcos(i + %)w/n - cos6, |

> ((57/3n)max{sin(i + %)N/n,sinei}]-1

> [(Sﬁ/n)sinei]-1,

because sin8/68 is decreasing on [0,7]. The measure of the set

{x = cosB:|nd® ~ in| € w/3} is
cos((i - %)W/n) - cos((i + %)ﬂ/n) > (27/3n)min{sin(i # %)W/n}

’ (Zﬂ/gn)sinei.
Therefore,

-1 _n - 2r
c; = {1 [T, (x)/(x=t )] < ax

> ((Sﬂ/n)sinei)—z

r(2"/9n)sin01.
Thus
(3.12) ¢, < 24(5"2:1::91/:\)21"1 = 24(51"'1-:";/“)2"’1 < cr(¢1-t:/N)2r'1.

To complete the estimate (3.7), observe that

fx Gt (y)dy x <t
-1 i

i i 1
[' 8 (yray x> t,
t i
x i
Therefore,
B, A, T S e [Py
i 1 Ix=t |
i
=2r+1
< - - .
ci!x ti‘ /{(2x-1)

Combined with (3.12), this proves (3.7) for ¢t = t;+ Hence (3.6) is now

verified for ¢t = ty.

B




For the general case tieg € £ ¢ ti, define At

since 8in9/8 g decreasing on [0,n),

% w¢1-t2/n < min{sinei,sine

14q1/n

;]
i+1
< -
£ sin8ad = LR
i

2
< -
ax min{sinei,sin91+1}/n < 3n/1-t"/n.

Therefore,

I1 1mh 100 et 1% ton) ax
-1

= I B A 10 et ® Y ax
1 i

-1
< I' |Ht-ﬂt () I x-t|® w(x) dx
-1 i

+ f1 |Ht-3t.|(x)lx-tls-1w(x)dx.
~1 F I |
This first term, via (A2), is bounded by

f i|x-c|“"w(x)dx < A_(t,-t)%w(t)
. 2'%y

8
S A bt ) (e

< 2, 030/1-62/n) 20 (e

<c, 1= ey,
I

(The application of assumption A2.is valid providea,

- 2 - 2 > -
min{1 t[,1 tl 1} l(ti

€.g.,

holds if the congtant « mentioned in the Corollary,

discussion, is chosen sufficiently large,

-14~-
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» Note that,
i

t1+1)’ The reader may easily check that this
and the subsequent
depending on r and Y , This

observation applies as well to the application of assumptions A2 and A3 in the

——




R P

.ext set of inequalities.)

bounded by (§ := 1-t2/N)

c é

assuming (A2) and (A3) hold.

2r-1 f -2r+1

Ix-ti!
-t |3 -
[ x=t | 2|ti t1+1|

+
- < -
Ix=t| 2|ti t1+1|
2r-1
< c (26)°F /

- > -
Ix-t| 2le -t )

Since (3.7-8) hold for ti the second term is

lx—tls-1w(x)dx

Ix-tls-1w(x)dx

s-2r

Ix=t | w(x)dx

+ 28A21t -t, . 1%w(e)

1 7isv

2r-1 §=2r+1

< -
cr(26) A3(2|t1 t1+1“
8
+2 Azlti-t

i+

<c N mtu,

IBw(t)

w(t)

Therefore, (3.6) is now proved for all t e

{-1,1], and hence the estimate (3.1) is established for smooth u and for

weights w

satisfying assumptions (A1-3). In fact, in view of the Lemma, one

can improve (3.6), and hence (3.1), by replacing the expression (H-tz/N)s

by min{( 1-t2/N)s,(1-t2)s}. To extend the result to more general u,

define, for
(3.13)
where u(8)

(3.14)

positive integers s,

3
Tul =1 f1 'u(k)(x)|(1-x2)kw(x)dx,

WeB  yap -1

is interpreted as a weak derivative. Define

ﬂ, 1 - < Iyl
Yo {ue IR PELLE .

’

¢ =},




o *
Then Y: is a Banach space having C ({-1,1}) as a dense subspace , Using
this density, we arrive at the following theorem, which summarizes our
results.

Theorem 2. Let w be a positive, integrable function on ([-1,1] satisfying

assumptions (A1-3), where s in (A2) is some positive integer. Let u € Y:

(see (3.13-4) for the definition). Then for any positive integer N ? s-1,

inf ' Ju-ploowinax < ¢ [N 0o Imin{/1-x2M) %, (1-x%) hu(x) ax,
peP -1 8% 4

where Ph denotes polynomials of degree not exceeding N and cs,w is a

constant independent of N and u.

Remark 1. If u(8)(x)(1-x2)%/2 jig integrable on [=-1,1], the above estimate

may be simplified to yield

s8/2

inf f‘ lu~P] (x)w(x)dx € Cq N° f1 Iu(s)(x)|(1-x2) w(x)dx.

pep, -1 o -1
Remark 2, Assumptions (A2-3) imply, in particular, that w(t) > 0 for [t| <
1, unless w = 0. But such a condition is necessary for an estimate such as
(3.1) to hold. To see this, suppose that w is continuous at t and w(t) =
0. Choose a sequence {uj} of smooth functions with u;s)
ported in {t : |t| € 1/3] ana f1 u!®

o 3
simplicity). Then uj converges in L

positive, sup-

(t)dt = 1 (take 3 » 1/(1=-|t|) for

' to ulx) = Hy(x) (x-£) 571/ (8101

as 3 tends to infinity. For u = uj, the right hand side of(3.1) will tend
to zero. However, the left hand side certainly will not do so since u ¢ ﬁ‘ l

for any N.

.Proofz Define ur(x) := u{rx), 0 < r< 1, Then as r »> 1, u, »u in Y

r we
Let u, € be obtained from vy by mollifying: u ,e T v * §  where ‘
supp{6‘1 = [-€,€] and 6{ has integral one and is smooth. Then u is
smooth on [=1,1] for ¢ < 1-r, and u. € -+ u, in Y:. Now let r'~+ 1.
€= 1r >0 toget u . “u in Y. '

-16- » . .
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4. Higher-order error estimates for Gaussian quadrature

In this section, we combine the results of previous sections to prove an
estimate of the form (2.9). From (2.8), we know that

|eN(f)| <c inf I’ 1£'=P | (x)w(x)dx,

P on-2 7!

where w{x) := min{ 1-x2/N,1—x2}
of weights wy satisfy (A1), (A2) or (A3), then so does the weight function
min{wi}. Thus Theorem 2 applies to the weight w since it is a minimum of

two Jacobi weights, yielding

leg(f)1 < c, IV 1 () Imin L= 57T, (1= B V() ax
-1
=c, [1 1 o min (1%, (1) B .
-t

We summarize this final result as

Theorem 3. Let ey(f) denote the error in N-point Gaussian quadrature

approximation to the integral of £ on ([(-1,1] (gee (2.1-2) for

definitions). Suppose that (1-x2)3f(8)(x) (weak derivative) is integrable

on f{-1,1], ie., f € Y: where 8 is any integer such that 1 < g € 2N,

Then

leg ()1 < ¢, IV 1@ () lmin (V12 )8, (1-x2) %} ax,
-1
where Cq in_independent of N and f.

Remark 3. 1If l"(s’(x)“-xz)s/2 is integrable on [-=1,1], the above estimate

simplifies to

2)8/2 4.

- 1
ley(trl < cg v ° 116 a1 1x
8 21
This is the estimate anticipated in (1.1).

e - en e -

« It is easy to check that, if a collection

e e ——
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